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A forced two-horizontal-dimension analytical model is developed to investigate
the distinguishing physical features of landslide-induced tsunamis generated and
propagating on a plane beach. The analytical solution is employed to study the wave
field at small times after the landslide motion starts. At larger times, the occurrence
of transient edge waves travelling along the shoreline is demonstrated, showing the
differences with the transient waves propagating over a bottom of constant depth.
Results are satisfactorily compared with available experimental data. Finally, the
validity of non-forced numerical models is discussed.

1. Introduction
Landslide tsunamis occur as a consequence of local events, and are characterized

by a length scale O(1 km), much smaller than that of earthquake-generated tsunamis,
O(100 km), though the maximum induced runup can be still significant. The first
systematic experiments on landslide tsunami generation, by Wiegel (1955) with sliding
blocks down an incline, showed that the induced wave height increases with increasing
the slope, while decreasing with increasing submergence of the sliding mass. More
recently, Watts (1997) performed a series of similar tests on a smaller scale with
sliding blocks, though concentrating on the block terminal velocity and not measuring
wave runup. Large-scale experiments of Liu et al. (2005) investigated the correlation
between the maximum runup and the initial elevation of the slide, showing that larger
runup occurs for subaerial slides than submerged ones. The experimental work of
Panizzo, De Girolamo & Petaccia (2005) showed that the duration of underwater
landslide motion and the landslide front shape have a major role in determining
the maximum wave height. Various numerical studies on the behaviour of tsunamis
generated by a three-dimensional sliding mass on a plane beach have been also
undertaken (see Liu et al. 2005; Lynett & Liu 2005). By studying the free-surface
elevation time series for a wide set of numerical simulations for both subaerial and
submerged landslides, Lynett & Liu (2005) observed the occurrence of two different
wave fields. At the earliest times following the landslide generation, two-dimensional
wave motion occurs with high amplitudes only in a small region near the slide. As
time passes, these waves then radiate out while fast decaying, while shoreline motion
starts to become significant; later, edge waves propagating along the coastline become
predominant, while wave amplitudes near the slide become zero. Therefore, since both
a shoreline movement and an outgoing wave field are usually induced by the landslide
interaction with the water, the study of such transients requires the development of an
appropriate two-horizontal-dimension (2HD) model. However, though Liu, Lynett &
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Figure 1. The fluid domain in physical coordinates.

Synolakis (2003) developed a one-dimensional (1HD) analytical model, to date very
few analytical studies of landslide tsunamis include 2HD effects, as already pointed
out by Lynett & Liu (2005).

In §2, an analytical two-horizontal-dimension model of landslide tsunamis is
developed based on the forced linear long-wave equation of motion. The above
mentioned numerical observations of Lynett & Liu (2005) are then confirmed
analytically. In §3 the application of the method of stationary phase enables us
to derive a simplified expression for the free-surface elevation at larger times, which
consists of propagating transient edge waves. Comparisons with the transient waves
due to a displacement of the free surface over a constant depth is made in order
to further appreciate the distinctive nature of landslide-generated tsunamis along a
sloping beach, which is the absence of a leading wave at large times. In §4 results
are discussed; the free-surface elevation time series are analysed and compared
to available experimental data. Finally, in §5 the validity of homogeneous models
currently used in numerical analysis is discussed.

2. Analytical model
Referring to figure 1, let us consider a straight beach with constant slope s, and

define a plane reference system of coordinates (O ′, x ′, y ′), with the y ′-axis along the
mean shoreline; water is in the region x ′ > 0. We assume that the landslide originates
in a neighbourhood of the origin O ′, and its shape is symmetric with respect to
the y ′-axis; the induced wave field is also symmetric in y ′, allowing us to solve the
equation of motion in y ′ > 0 only.

2.1. Governing equations

Within the shallow water limit, consider the governing equation for forced long waves
on a uniformly sloping beach:

∂2ζ ′

∂t ′2 − gs∇ · (x ′∇ζ ′) =
∂2f ′

∂t ′2 , (2.1)

with g being the acceleration due to gravity, ∇(·) = [∂(·)/∂x, ∂(·)/∂y] the nabla
operator, ζ ′(x ′, y ′, t ′) the free-surface elevation, t ′ time and d ′ = sx ′ − f ′(x ′, y ′, t ′)
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the bottom depth, measured with respect to the mean water level z′ = 0. In (2.1)
f ′(x ′, y ′, t ′) is a time-dependent perturbation of the sea floor, representing the landslide
moving on the plane beach, as sketched in figure 1. Let H and σ be respectively the
maximum vertical thickness and the characteristic horizontal length of the landslide.
The following non-dimensional variables can be introduced:

x = x ′/σ, y = y ′/σ, t =
√

gs/σ t ′, ζ = ζ ′/H, (2.2)

so that the equation of motion (2.1) becomes

xζxx + ζx + xζyy = ζtt − ftt . (2.3)

The subscripts denote derivatives with respect to the relevant variable. We require the
free-surface elevation ζ (x, y, t) to be bounded at the shoreline x = 0, and to decay as
x tends to infinity for all positive y and t . Since the spatial domain is the quadrant
x > 0, y > 0, and the free-surface elevation is expected to be an even function of y,
the cosine Fourier transform of ζ ,

ζ̂ (x, k, t) =

∫ ∞

0

ζ (x, y, t) cos ky dy, (2.4)

can be employed, k being the non-dimensional transform parameter. Equation of
motion (2.3) is then transformed into

xζ̂ xx + ζ̂ x − xk2ζ̂ = ζ̂ t t − f̂ tt . (2.5)

By introducing the further transformations

ξ = 2kx, ζ̂ = e−ξ/2Z(ξ, k, t), (2.6a, b)

equation (2.5) becomes

2k
[
ξZξξ + (1 − ξ )Zξ − 1

2
Z

]
− Ztt = −Ftt (ξ, k, t), (2.7)

where

F (ξ, k, t) = f̂ (ξ/2k, k, t) eξ/2. (2.8)

2.2. Solution

The transformed equation of motion (2.7) is a non-homogeneous partial differential
equation of the second order in the domain ξ > 0, t > 0. To obtain its solution, let
us first consider the associated homogeneous equation

2k
[
ξZξξ + (1 − ξ )Zξ − 1

2
Z

]
− Ztt = 0. (2.9)

The solution Zh of (2.9) can be obtained by means of separation of variables:
Zh = X(ξ )T (k, t). Boundedness of the free surface requires

|X(0)| < +∞, lim
x→∞

e−ξ/2X(ξ ) = 0. (2.10)

Solution of the separated problems for X(ξ ) and T (k, t) yields

Zh(ξ, t) =

∞∑
n=0

Zhn
(ξ, t) =

∞∑
n=0

Ln(ξ ) [cn cosωnt + dn sinωnt] , (2.11)

where Ln(ξ ) = L(0)
n (ξ ) are the Laguerre polynomials, which are orthonormal functions

with respect to the weighting function e−ξ ξ a in ξ ∈ [0, ∞):∫ ∞

0

e−ξ ξ aL(a)
n (ξ )L(a)

m (ξ ) dξ =
�(n + a + 1)

n!
δnm, (2.12)
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� being the gamma function, δnm the Kronecker’s operator and a a positive real
number; cn and dn are to be determined from initial conditions. The relevant
eigenvalues are given by

ωn =
√

k (2n + 1), n = 0, 1, 2, (2.13)

which defines the motion eigenfrequencies. The method of variation of parameters can
be employed to find the solution of the inhomogeneous problem (2.7) with boundary
conditions (2.10). We assume for Z(ξ, k, t) the same algebraic expression as Zh, i.e.

Z(ξ, k, t) =

∞∑
n=0

Ln(ξ )Tn(k, t), (2.14)

with Tn unknown functions required to satisfy (2.7). By means of the orthogonality
property (2.12), (2.7) yields a differential equation for Tn:

Tn,tt + ω2
nTn =

∫ ∞

0

e−ξLn(ξ )Ftt (ξ, k, t) dξ, (2.15)

where the ωn are still defined by (2.13). We require that at t = 0 both the free-surface
elevation ζ and velocity ∂ζ/∂t are zero; hence Tn(k, 0) = 0, Tn,t (k, 0) = 0. Solution of
this initial-value problem gives

Tn(k, t) =
2k

ωn

∫ ∞

0

e−kαLn(2kα)In(α, k, t) dα, (2.16)

with

In(α, k, t) =

∫ t

0

f̂ ττ (α, k, τ ) sin [ωn(t − τ )] dτ. (2.17)

Consider a translating Gaussian sea-floor movement, f (x, y, t) = exp[−(x − t)2]s(y),
where s(y) = exp[−(cy)2] is a lateral spreading function and c = σ/λ, λ being the
characteristic width of the landslide along the shoreline. Then, the integral function
(2.17) can be solved by parts to obtain

In = ωnŝ(k)

{[
ωnan − e−α2]

cos ωnt −
[

2

ωn

αe−α2

+ ωnbn

]
sinωnt + e−(α−t)2

}
, (2.18)

where ŝ(k) =
√

π/(2c) exp(−k2/4c2) is the cosine Fourier transform of s(y) and

an = an(α, k, t) =

√
π

2
e−ω2

n/4Im
{

eiωnα
[
erf

(
α + i

ωn

2

)
− erf

(
α − t + i

ωn

2

)]}
, (2.19)

while

bn = bn(α, k, t) =

√
π

2
e−ω2

n/4Re
{
eiωnα

[
erf

(
α + i

ωn

2

)
− erf

(
α − t + i

ωn

2

)]}
. (2.20)

Re{} and Im{} are respectively the real and imaginary part of {}. Tn can now be
determined upon substitution of (2.18) into (2.16). Finally, the inverse transform of
(2.14), together with the substitutions dictated by (2.6), yields the free-surface elevation

ζ (x, y, t) =
2

π

∞∑
n=0

∫ ∞

0

e−kxLn(2kx)Tn(k, t) cos ky dk. (2.21)

For a simple physical interpretation of (2.21), define the integral transform Ln of
a given function u(α, k, t) as

Ln [u] (k, t) =
2k

ωn

∫ ∞

0

e−kαLn(2kα)u(α, k, t)dα, (2.22)
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Figure 2. Numerical evaluation of An and Bn for the first two modes as functions of k;
c = 2. (a) t = 1, (b) t = 5.

so that Tn = Ln [In]. Hence, by simply applying the transform Ln to (2.18) we can
formally rewrite (2.21) as ζ = ζ o + ζ e, where

ζ o =
2

π

∞∑
n=0

∫ ∞

0

e−kxLn(2kx) [An cos ωnt + Bn sinωnt] cos ky dk, (2.23)

with

An = An(k, t) = ωnŝLn
[
ωnan(α, k, t) − e−α2]

, (2.24)

Bn = Bn(k, t) = −ŝLn
[
2αe−α2

+ ω2
nbn(α, k, t)

]
, (2.25)

and

ζ e =
2

π

∞∑
n=0

∫ ∞

0

e−kxLn(2kx) ωnŝLn
[
e−(α−t)2

]
cos ky dk. (2.26)

Now, ζ o describes an oscillatory motion in time. Numerical evaluation of (2.24) and
(2.25) shows that its coefficients An and Bn are fast-decaying functions of k for any
given time t , hence the integral in (2.23) is fast convergent in k at all times. The
magnitudes of An and Bn decrease for increasing n, as can be seen in figure 2. For
large t , the second error function in expressions (2.19) and (2.20) tends to unity, and
the an and bn in (2.24) and (2.25) do not depend on time. Therefore An and Bn

approach limiting values that depend only on k.
ζ e decays exponentially with time. Hence, the landslide generates a twofold wave

field made up by oscillatory and evanescent components, the latter rapidly vanishing
with time.

2.3. Time of decay

To estimate the time of decay of the evanescent term ζ e, consider (2.26). The Ln

transform inside (2.26) can be approximated by

Ln
[
e−(α−t)2

]
� 2k

ωn

e−ktLn(2kt)

∫ ∞

0

e−(α−t)2dα =

√
π k

ωn

(erft + 1) e−ktLn(2kt).
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Figure 3. Decay of the evanescent term ζ e for the fundamental mode n = 0 at (a)
(x, y) = (0, 0), (b) (x, y) = (0, 1); c = 2. Note that for large times ζ e

0 � 2/ct2.

Therefore, to the crudest approximation, for t > 1

|ζ e| �
∣∣ζ e

0

∣∣ �
1

c
(erft + 1)

∫ ∞

0

ke−kt dk �
2

ct2
, ∀(x, y). (2.27)

The evanescent component decays as O(1/t2) at each point of the fluid domain, as
shown in figure 3. Now, define a positive constant ε 	 1. Then |ζ e| � 2/ct2 � ε when
t � tdec, where

tdec =

√
2

εc
(2.28)

is the time of decay of the evanescent component. For t > tdec, ζ e can be neglected,
and the free-surface elevation is made up only of the oscillatory component ζ � ζ o.
As an example, for ε = 0.05, c = 2, the time of decay is tdec � 4.5. With the same
order of approximation, (2.28) can be written in physical variables as

t ′
dec � 6.32

√
λ

gs
, (2.29)

which is similar in form to the characteristic time of motion defined by Watts et al.
(2003). Relation (2.29) shows that the larger the landslide width λ, the slower the
decay of the evanescent component; on the other hand, the steeper the beach, the
faster the decay of ζ e. We next turn to the analysis of ζ o.

3. Behaviour for large times
Numerical methods have shown that for t 
 0 edge waves are propagating along

the shoreline, while the perturbations rapidly diminish near the point of generation O

(see Lynett & Liu 2005). To demonstrate this analytically, consider the expression for
the nth modal free-surface elevation at the shoreline, ζn(0, y, t). For t large enough to
neglect the contribution of the evanescent term ζ e, the free-surface elevation becomes

ζn(0, y, t) � ζ o
n (0, y, t) =

2

π

∫ ∞

0

[An(k, t) cosωnt + Bn(k, t) sinωnt] cos ky dk. (3.1)
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Let us now consider the integral in (3.1),

2

π

∫ ∞

0

An cos ωnt cos ky dk =
2

π
Re

{∫ ∞

0

An
1
2

[
eit(ky/t−ωn) + eit(ky/t+ωn)

]
dk

}
, (3.2)

where the exponential terms represent respectively a right-going wave and a left-
going wave. The behaviour of these two waves at large times can be analysed with
the method of stationary phase (see Mei, Stiassnie & Yue 2005). For t 
 1, the
exponential functions of phase

wn(k) = ky/t ∓ ωn = ky/t ∓
[
2k

(
n + 1

2

)]1/2
(3.3)

oscillate quickly with varying k, sweeping a very small net area, and so determine the
integrals in (3.2) to be approximately null. In a neighbourhood of the points kn = k∗

n

where the phase is stationary, the exponential function covers a larger net area,
and the integral (3.2) becomes significant. If we denote d/dk() = (̇), the stationary
points for the right-going wave occur at y/t − ω̇n = y/t − Cgn

= 0, where Cgn
= ω̇n

is the nth modal group celerity. Differentiating (3.3) and equating to zero yields
k∗

n = (2n + 1)(t/2y)2. Note that for the left-going wave there are no stationary points.
By Taylor-expanding the phase function wn about the stationary point k∗

n, the integral
(3.2) can be approximated as

2

π

∫ ∞

0

An(k, t) cos ωnt cos ky dk �
√

2An(k
∗
n, t)(

π t |ω̈n(k∗
n)|

)1/2
cos

(
k∗

ny − ωnt +
π

4

)
, (3.4)

with |ω̈n(k)| =
√

2n + 1/4k3/2. Analogous considerations can be made for

2

π

∫ ∞

0

Bn(k, t) sinωnt cos ky dk � −
√

2Bn(k
∗
n, t)

(π t |ω̈n(k∗
n)|)1/2

sin
(
k∗

ny − ωnt +
π

4

)
. (3.5)

By substituting (3.4) and (3.5) into (3.1) and summing the single modes, we obtain

ζ (0, y, t) �
∞∑

n=0

ζ o
n (0, y, t) �

∞∑
n=0

√
2

(π t |ω̈n(k∗
n)|)1/2

×
[
An(k

∗
n, t) cos

(
k∗

ny − ωnt +
π

4

)
− Bn(k

∗
n, t) sin

(
k∗

ny − ωnt +
π

4

)]
. (3.6)

Equation (3.6) is an approximated expression (error = O(t−1), see Mei et al. 2005)
of the free-surface elevation at the shoreline for large times. In (3.6) each of the
modal components is the sum of two waves, of amplitude

√
2An(πt |ω̈n|)−1/2 and√

2Bn(πt |ω̈n|)−1/2 respectively, both vanishing with time as t−1/2.
Finally, by using the same method but for x > 0, we obtain the approximated

expression for the free-surface elevation for all (x, y) at large times:

ζ (x, y, t) �
∞∑

n=0

e−k∗
nxLn

(
2k∗

nx
)
ζ o
n (0, y, t). (3.7)

Expression (3.7) shows the fast decay in x of the free-surface oscillation, a
distinguishing feature of the edge waves. Therefore, at large times the motion
consists of a system of edge waves propagating along the shoreline, with amplitudes
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Figure 4. Contour levels of the evanescent component ζ e in non-dimensional variables at
times (a) t = 0.5, (b) t = 1.5, (c) t = 4.5, (d) t = 7. The first six modes have been considered.
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(b) t = 15, (c) t = 20, (d) t = 30. The first five modes have been considered.

proportional to An|ω̈n|−1/2 and Bn|ω̈n|−1/2. Note that |ω̈n| increases with no boundaries
for decreasing k, causing the above amplitudes to vanish. Hence longer waves, which
travel faster since ω̇n = Cgn

= (2n + 1)/(2
√

k), are not those of larger amplitude. This
agrees with the results obtained with earlier numerical models and experimental tests
(see, for example, Lynett & Liu 2005). The lack of a properly defined leading wave
for large times distinguishes landslide-generated tsunamis on a plane beach from
transient waves generated and propagating over a constant depth d (see Mei et al.
2005; Di Risio & Sammarco 2008). In the latter case, in fact, the dispersion relation
ω(k) =

√
gk tanh kd causes the wave amplitude, proportional to |ω̈|−1/2, to increase

as k decreases (i.e. while moving toward the wavefront), till it becomes unbounded at
k = 0. Solution of this singularity (see Mei et al. 2005) yields the known expression
for the leading wave in terms of the Airy function. In the present case, instead, there
is no singularity at k = 0 as discussed above.

4. Discussion
Let us analyse the wave motion generated by a characteristic landslide with

parameter c = σ/λ = 2. In figure 4(a–d ) the contours of the evanescent component
ζ e, expression (2.26), at four different instants are shown. When t is small, ζ e is
non-zero only in a narrow area landward of the slide (see figure 4a). After some
instants, the evanescent component is propagating mostly in the offshore direction
(figure 4b), while its amplitude rapidly decreases as t approaches tdec � 4.5 (see
figure 4c). Finally, for t > tdec, ζ e is zero everywhere in the fluid domain (figure 4d ).
Hence the evanescent term is a result of the early interaction between landslide and
water, directly affecting the wave motion only during the phase of generation. In this
phase, the occurrence of source-specific waves has also been shown via numerical
investigation by Lynett & Liu (2005). Now, let us focus on the free-surface elevation
ζ = ζ o + ζ e, given by (2.23) and (2.26), and represented in figure 5(a–d ). At the
earliest times of motion, the landslide pushes water ahead and generates a leading
elevation wave. This wave is propagating mostly in the offshore direction, due to the
stretched shape of the slide, while propagation along the shore is less noticeable. In
the meantime, a depression wave occurs landwards (figure 5a). After few instants,
the elevation wave is also spreading along the shoreline, while the depression wave
dominates over a large area around the origin (figure 5b). At larger times the first
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elevation wave has left the domain, followed by the propagating depression wave
(figure 5c). In turn, the latter is wrapping a second elevation wave generated by the
elastic rebound at the origin. Water motion along the shoreline becomes evident.
Finally, for t = 7, the perturbation is travelling mostly in the longshore direction
(figure 5d ), while around the origin the water returns to the unperturbed position.
Figure 6(a–d ) shows four snapshots of the free-surface elevation at large times, and
are obtained by using the stationary phase solution (3.7). Starting from the left, note
the longshore wave motion being already predominant at t = 10 (see figure 6a, b).
By t = 20, the wave motion is bounded at the shoreline (figure 6c), and later in time
only edge waves are present (see figure 6d ). The first-occurring waves are not those
of larger amplitude, as demonstrated in §3. Furthermore, new wave crests are created
in the course of propagation, while the perturbation moves ahead from the origin.
Longer waves travel faster and are followed by a tail of shorter waves, as obtained
numerically by Lynett & Liu (2005). The linear long-wave theory, non-dispersive over
bottoms of constant depth, reproduces the dispersive behaviour of the trapped waves
over inclined bottoms.

4.1. Experimental comparison

In this section the free-surface time series at the shoreline are evaluated and compared
to experimental data (see Di Risio et al. 2008), obtained by letting an oval block 0.8 m
long by 0.4 m wide slide down a steep slope, s = 0.3. The landslide centroid is initially
positioned at about the free surface, the landslide maximum thickness is 0.05 m, and
its maximum cross-sectional area is about 0.03 m2. The basin is 5.40 m long by 10.8 m
wide, 0.8 m deep. By letting our parameters be σ = 0.37 m, H = 0.045 m and c = 2,
the overall area beneath the forcing function f ′ approximates the landslide maximum
cross-sectional area. In figure 7(a, b) the free-surface time series at two different points
along the shoreline are plotted. The graphs show good correspondence between the
theoretical and experimental data. In particular, the overall behaviour of the fluid
is reproduced with acceptable accuracy by the model, even though the runups and
drawdowns seem to be over-estimated. This happens since the model does not take
into account energy dissipation phenomena such as shear actions or wave breaking
occurring in the experiment.

5. Approximation with a homogeneous system
So far, the forced initial-value problem set by (2.3), with initial conditions ζ = 0 and

ζt = 0 at t = 0, has been solved. The solution in terms of the free-surface elevation
ζ is given by (2.21). For brevity, the above-mentioned initial-value problem will be
rewritten as

�ζ = ftt , ζ (x, y, 0) = 0, ζt (x, y, 0) = 0, (5.1a, b, c)

where �(·) = −[x(·)xx + x(·)yy + (·)x − (·)t t ]. It has been argued that (5.1) can
be transformed into a simpler homogeneous system, if one considers some
approximations in the governing equations and the boundary conditions. First, at
t � tdec, the landslide has already reached deeper water, so that wave forcing in
shallow water is less effective. Also, the initial free-surface perturbation generated
by the slide starts to propagate from the shoreline in the horizontal plane (see
§4). Therefore, when analysing the behaviour of the system near the shoreline, for
t � tdec, the forcing term in (5.1a) can be neglected and a homogeneous initial-
value problem starting at t = tdec can be considered instead. At this time the
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Figure 7. Free-surface time series in physical variables at (a) (x ′, y ′) = (0, 3.1 m), (b)
(x ′, y ′) = (0, 4.07 m). The bold dashed line shows the experimental data (visual imaging
technique), the continuous line represents the theoretical values. ζ is evaluated with the
stationary phase approximation formula (3.6) and then transformed into dimensional form.
The first five modes have been considered.

initial free-surface elevation can be described by a known function of the spatial
coordinates, ζ (x, y, 0) = g(x, y). A double Gaussian function is often used to represent
it: g(x, y) = 2/π[exp(−(x2 + y2)) − a exp(−(x2 + c2y2)/b2)], where a and b are shape
parameters, depending on the characteristics of the landslide (see Carrier, Wu & Yeh
2003; Watts et al. 2005, for a compendium of possible wave forms). Hence to solve
the problem, only the initial velocity ζt (x, y, 0) = h(x, y) would need to be set. It
has been widely assumed in the literature that after the landslide initiates, the total
tsunami energy is almost all potential energy (see Watts et al. 2003, 2005). With
this hypothesis, the initial velocity can be neglected: h(x, y) � 0, and the problem
becomes

�ζ = 0, ζ (x, y, tdec) = g(x, y), ζt (x, y, tdec) = 0, t � tdec, (5.2a, b, c)

i.e. a non-forced homogeneous initial-value system. This approach is currently
employed in some landslide-generated-tsunami forecasting models (see Watts et al.
2003).

Here we further investigate the analytical effectiveness of describing the fundamental
behaviour of the fluid in this manner. In so doing, the following questions are posed:
does a homogeneous system equivalent to (5.1) really exist, and, for t � tdec, is this
system (5.2)? In order to respond to the first question, define a function η(x, y, t − τ ),
with τ a positive real parameter, solution of

�η = 0, η(x, y, 0) = 0, ηt (x, y, 0) = ftt (x, y, τ ), t � τ . (5.3a, b, c)

This is a homogeneous system, starting at t = τ , with zero initial free-surface elevation
and initial velocity given by the forcing term ftt (x, y, τ ). Extension of Duhamel’s
principle to the forced problem (5.1) reveals that

ζ (x, y, t) =

∫ t

0

η(x, y, t − τ ) dτ (5.4)

is the solution of (5.1). Hence the first question has a positive answer: the
homogeneous system (5.3), together with Duhamel’s integral formula (5.4), yield
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the solution of (5.1). No other equivalent homogeneous systems seem to exist. For
a practical numerical simulation, solution (5.4) could be more suitable than directly
solving the forced system (5.1). Now the second question: the equivalence between
(5.1) and (5.2). Consider again the full problem (5.1), but with initial time t = tdec:

�ζ = ftt (x, y, t), ζ (x, y, tdec) = ḡ(x, y), ζt (x, y, tdec) = h̄(x, y), (5.5a, b, c)

where, taking only ζ o,

ḡ =
2

π

∞∑
n=0

∫ ∞

0

e−kxLn(2kx) [An(k, tdec) cosωntdec + Bn(k, tdec) sinωntdec] cos ky dk,

(5.6)

h̄ =
2

π

∞∑
n=0

∫ ∞

0

e−kxLn(2kx)ωn{[An,t + ωnBn]t=tdec
cosωntdec + [Bn,t − ωnAn]t=tdec

× sinωntdec} cos ky dk. (5.7)

Equations (5.6) and (5.7) are respectively the free-surface elevation and velocity
at t = tdec computed with (2.23). By definition, for t � tdec a rigorous analytical
equivalence occurs only between systems (5.1) and (5.5). The latter is equal to (5.2) if
and only if: (i) the forcing term ftt is omitted, (ii) the initial free-surface elevation (5.6)
is substituted with the easier double Gaussian form g(x, y), (iii) the initial velocity
(5.7) is neglected. As discussed above, point (i) might not produce appreciable errors
in shallow water. On the other hand, the approximations in points (ii) and (iii) might
result in simulating a different physical behaviour of the system. In particular, the
total neglect of the initial velocity seems to have no analytical confirmation, since it
cannot be stated that (5.7) is zero in all the fluid domain for any shape of the landslide
(i.e. for any tdec). In conclusion, no analytical demonstration of the correctness of
replacing the homogeneous problem (5.2) in place of (5.1) seems to exist. The usage
of a homogeneous system instead of the forced one has an analytical confirmation
only within Duhamel’s integral representation (5.4).

6. Conclusion
An analytical forced two-horizontal-dimension model has been developed to analyse

the distinguishing physical features of landslide-induced tsunamis along a straight
coast. After a short transient immediately following the landslide generation, the
wave motion starts to be trapped at the shoreline and finally only transient longshore
travelling edge waves are present. Longer waves travel faster and are followed by a
tail of shorter waves, while new crests are created. Unlike transient waves generated
and propagating in water of constant depth, for landslide-induced tsunamis along
a sloping beach the larger waves are not in the front of the wavetrain, but are
shifted toward the middle of it. Experimental comparison shows the validity of the
model in reproducing the physical behaviour of the system. Finally, the accuracy
of homogeneous initial-value models in reproducing landslide-generated tsunamis is
discussed. Since no analytical demonstration of the validity of this approach seems
to exist, usage of such simplified models is advised only for quick runup assessment.

Experimental data provided by Dr M. Di Risio have been very useful for
experimental comparison. Fruitful discussions and suggestions of Dr A. Panizzo and
Dr G. Bellotti are also kindly acknowledged. Significant contribution from Professor
P. Lynett has been a powerful engine for further insight into the problem.
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